

Abschlussprüfung an der Berufsoberschule im Schuljahr 2008/2009

Fach	Mathematik (B)
Name, Vorname	
Klasse	
Prüfungstag	27. Mai 2009
Prüfungszeit	09:00 - 13:00 Uhr
Zugelassene Hilfsmittel	Nicht graphikfähiger Taschenrechner mit gelöschtem Programmierteil; Formelsammlung, Rechtschreib-Wörterbuch (Duden)
Allgemeine Arbeitshinweise	Die Reinschriften und Entwürfe sind nur auf den besonders gekennzeichneten Bögen anzufertigen, die Sie für die Prüfung erhalten. Diese sind zu nummerieren und sofort mit Ihrem Namen zu versehen. Für jede Aufgabe ist ein neuer gekennzeichneter Bogen zu beginnen. Schwerwiegende oder gehäufte Verstöße gegen die sprachliche Richtigkeit oder gegen die äußere Form führen zu einem Abzug von bis zu einem Punkt (Malus-Regelung). Bedenken Sie die Folgen einer Täuschung oder eines Täuschungsversuchs!
	Aus den fünf Aufgaben müssen Sie drei auswählen.
	Die Aufgabe 1 (Exponentialfunktionen) ist eine Pflichtaufgabe . Sie muss von allen bearbeitet werden!
Spezielle	Zwischen Aufgabe 2 (Gebrochenrationale Funktionen) und Aufgabe 3 (Trigonometrische Funktionen) müssen Sie wählen .
Arbeitshinweise	Auch zwischen Aufgabe 4 (Analytische Geometrie) und Aufgabe 5 (Stochastik) müssen Sie wählen .
	Die Lösungswege müssen klar gegliedert, schrittweise und eindeutig nachvollziehbar sowie angemessen kommentiert sein. Nebenrechnungen sind durch Einrücken etc. kenntlich zu machen. Nur einwandfrei Leserliches wird bewertet. Die erste nicht durchstrichene Lösung zählt.

Gesamtzahl			

Rlätto

Bewertungseinheiten, Gesamtpunkte

Aufgabe Nr.	Soll %	Ist	lst (Zweitkorrektur)
1	34		
2 oder 3	33		
4 oder 5	33		
Summe:	100		
Notenpunkte:	15	Punkte	Punkte
Maluspunkt:	-1	Punkt	Punkt
Insgesamt:		Punkte	Punkte
Datum, Unterschrift			

1 Exponentialfunktionen /34 Gegeben sei die reelle Funktion f durch den Term $f(x) = (4 - e^x) \cdot e^x = 4e^x - e^{2x}$. **1.1** Bestimmen Sie das Verhalten von *f* im Unendlichen. /2 **1.2** Berechnen Sie die Achsenschnittpunkte von f. /4 **1.3** Bestimmen Sie Extrem- und Wendepunkte von f. /10 [Verwenden Sie: $f'''(x) = (4-8e^x) \cdot e^x$] **1.4** Zeichnen Sie den Graphen von f für $-1.5 \le x \le 1.5$ in ein Koordinatensystem. /5 **1.5** Bestimmen Sie eine Stammfunktion von f. /2 **1.6** Der Graph von f umschließt im 1. Quadranten mit den Achsen ein endliches Flächenstück A. /3 Berechnen Sie seinen Inhalt. **1.7** Berechnen Sie die Stellen, an denen die Funktion f den Wert 2 annimmt. /8

2 Gebrochenrationale Funktionen

/33

Gegeben sei die Funktion f durch ihre Funktionsgleichung $f(x) = \frac{x^3 + 8}{x^2}$.

- **2.1** Bestimmen Sie den Definitionsbereich D_f .
- **2.2** Untersuchen Sie das Verhalten von f an der Definitionslücke und bestimmen Sie die Gleichung der Asymptote a.

 [Zur Kontrolle: a(x) = x]
- **2.3** Berechnen Sie die Nullstelle von f.
- **2.4** Bestimmen Sie die erste und die zweite Ableitung von f.
- **2.5** Berechnen Sie eventuelle Extrem- und Wendepunkte von f.
- **2.6** Zeichnen Sie unter Verwendung Ihrer bisherigen Ergebnisse den Graphen von f und die Asymptote a im Intervall [-3;7] in ein Koordinatensystem. Wählen Sie für beide Achsen die Einteilung 1 LE=1 cm .
- **2.7** Es gibt eine Tangente t an den Graphen von f, die senkrecht zur Asymptote a verläuft.

 Mathematika

 **Mathem
- **2.8** Skizzieren Sie in Ihrer graphischen Darstellung (für eine x-Stelle größer als 1) eines der Rechtecke, die durch die folgenden Punkte gegeben werden: $A(x \mid a(x)), B(x \mid f(x)), C(1 \mid f(x)), D(1 \mid a(x)).$
- **2.9** Von den in 2.8 beschriebenen Rechtecken besitzt eines maximalen Flächeninhalt. Bestimmen Sie diesen maximalen Flächeninhalt.

[Zur Kontrolle: Die Zielfunktion zur Bestimmung der Fläche lautet z. B. /6

$$A(x) = \frac{8}{x} - \frac{8}{x^2}$$
.]

3 Trigonometrische Funktionen

/33

Gegeben seien die Funktionen f und g durch ihre Funktionsgleichungen

$$f(x) = 2 + \cos(x)$$
 und $g(x) = \sin^2(x)$.

Führen Sie die nachfolgenden Untersuchungen im Intervall $0 \le x \le \pi$ durch.

3.1 Ergänzen Sie die folgende Wertetabelle:

х	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{5}{6}\pi$	π
f(x)							
g(x)							

/6

3.2 Zeichnen Sie die Graphen von f und g im angegebenen Intervall in ein gemeinsames Koordinatensystem.

/4

3.3 Zeigen Sie, dass die Funktion G mit $G(x) = \frac{1}{2}x - \frac{1}{4}\sin(2x)$ eine Stammfunktion von g ist.

/5

3.4 Die senkrechten Geraden mit den Gleichungen x = 0 und $x = \pi$ und die Graphen von f und g schließen eine Fläche vollständig ein.

/5

Berechnen Sie deren Inhalt.

3.5 Jede Parallele zur y-Achse schneidet die Graphen von f und g in zwei übereinander liegenden Punkten. Der Abstand dieser Punkte wird durch die Funktion h mit h(x) = f(x) - g(x) beschrieben.

/13

Berechnen Sie die Stelle x_{\min} , für die der Abstand dieser beiden Punkte minimal ist.

[Zur Kontrolle: $h'(x) = \sin(x) \cdot (-2\cos(x) - 1)$]

4 Analytische Geometrie

/33

Das ebene Viereck ABCD sei gegeben durch die Punkte:

$$A(5 | 6 | 1)$$
, $B(-3 | 10 | 5)$, $C(1 | 4 | 7)$ und $D(9 | 0 | 3)$

4.1 Zeigen Sie, dass diese vier Punkte in einer Ebene E liegen.

/8

Ermitteln Sie, um welche besondere geometrische Figur es sich bei diesem Viereck handelt.

4.2 Bestimmen Sie die Schnittgerade von dieser Ebene E mit der Ebene F: 4x-8y+z=-18.

/6

[Zur Kontrolle: Mögliche Gleichung für die Schnittgerade

$$g: \vec{x} = \begin{pmatrix} -1\\3\\10 \end{pmatrix} + r \cdot \begin{pmatrix} -3\\-1\\4 \end{pmatrix}; r \in \mathbb{R}$$

4.3 Ermitteln Sie den Spurpunkt der in Teilaufgabe 4.2 ermittelten Schnittgeraden *g* mit der *x-z*-Ebene.

/2

4.4 Bestimmen Sie den Abstand der in Teilaufgabe 4.2 ermittelten Schnittgeraden *g* vom Koordinatenursprung.

/5

4.5 Berechnen Sie den Schnittwinkel zwischen den Diagonalen des Vierecks *ABCD*.

/6

4.6 Zeigen Sie:

/6

Sind in einem Parallelogramm alle Seiten gleich lang, so stehen die Diagonalen senkrecht aufeinander.

5 Wahrscheinlichkeitsrechnung /33 Auf einer fernen Insel werden bei einem wöchentlich durchgeführten Glücksspiel zur Ermittlung einer dreistelligen Glückszahl aus einer Trommel, die Kugeln mit den Ziffern 0 bis 9 je dreimal enthält, nacheinander zufällig drei Kugeln **ohne** Zurücklegen gezogen. Es können daher 1.000 verschiedene Zahlen von 000 bis 999 gezogen werden. **5.1** Erstellen Sie ein Baumdiagramm zur Beantwortung der folgenden vier Fragen. Mit welcher Wahrscheinlichkeit wird am kommenden Freitag eine Kugel mit der Ziffer 1 im ersten, mit welcher Wahrscheinlichkeit im zweiten und mit welcher im /9 dritten Zug gezogen? Mit welcher Wahrscheinlichkeit wird am kommenden Freitag die Zahl 111 gezogen? **5.2** Mit welcher Wahrscheinlichkeit wird am kommenden Freitag die Zahl 815 gezogen? Wie viel Mal wahrscheinlicher ist also die Ziehung der Zahl 815 verglichen mit der Ziehung der Zahl 111? /3 Hinweis: Bitte beachten Sie, dass es auf die Reihenfolge ankommt, in der die Kugeln gezogen werden. Werden z. B. die Kugeln mit den Ziffern 8, 5 und 1 (in dieser Reihenfolge!) gezogen, so erhält man die Zahl 851 und nicht die Zahl 815. **5.3** Zeigen Sie, dass am kommenden Freitag mit der Wahrscheinlichkeit $p \approx 0.7980$ /2 eine Glückszahl mit drei verschiedenen Ziffern gezogen wird. **5.4** Mit welcher Wahrscheinlichkeit werden an den kommenden neun Freitagen genau /3 sechs Glückszahlen mit drei verschiedenen Ziffern gezogen? **5.5** Mit welcher Wahrscheinlichkeit wird an den kommenden drei Freitagen mindestens /2 eine Glückszahl mit drei verschiedenen Ziffern gezogen? **5.6** Wie häufig muss eine Glückszahl gezogen werden, damit mit einer Wahrscheinlichkeit von mindestens 99,99 % mindestens eine Glückszahl mit drei verschiedenen /4 Ziffern gezogen wird? **5.7** Mit wie vielen Glückszahlen mit drei verschiedenen Ziffern kann man bei den nächsten 100 Ziehungen im Mittel rechnen?

Teil-	- Erwartete Teilleistung BE in AB				
auf-	Liwartete Tellicistariy	I		III	
gaben					
1.1	$\lim_{x \to -\infty} f(x) = 0 \text{ und } \lim_{x \to +\infty} f(x) = -\infty \text{ mit Begründung}$	2			
1.2	$(4 - e^{x_N}) \cdot e^{x_N} = 0$; $x_N = \ln 4 \approx 1.39$; $S_x(\ln 4 \mid 0)$		3		
	$S_{y}(0 3)$	1			
1.3	$f'(x) = (4-2e^x) \cdot e^x$, und $f''(x) = (4-4e^x) \cdot e^x$	2			
	$(4-2e^{x_E})\cdot e^{x_E} = 0$; $x_E = \ln 2 \approx 0.69$		3		
	$f''(\ln 2) = -8 < 0$; $H(\ln 2 \mid 4)$		2		
	$(4-4e^{x_W})\cdot e^{x_W}=0; x_W=0; f'''(0)=-4; W(0 3)$		3		
1.4	$f(-1,5) \approx 0.8427$; $f(1,5) \approx -2.159$	5			
1.5	$F(x) = 4e^x - \frac{1}{2}e^{2x}$		2		
1.6	$\int_{0}^{\ln 4} f(x) dx = 4e^{\ln 4} - 0.5e^{2\ln 4} - (4e^{0} - 0.5e^{0}) = 16 - 0.5 \cdot 4^{2} - 3.5 = 4.5$		3		
1.7	Gleichung aufstellen: $4 \cdot e^x - e^{2x} = 2$, Substitution $z = e^x$			3	
	Quadratische Gleichung $4z - z^2 = 2$ lösen: $z_{1/2} = 2 \pm \sqrt{2}$			3	
	Resubstitution: $x_1 = \ln z_1 \approx 1,23$ und $x_2 = \ln z_2 \approx -0.53$			2	
	Summe (Aufgabe 1)	10	16	8	
	Mögliche BE		34		

Teil-	Erwartete Teilleistung	ВЕ	in /	4B
auf-		I	II	III
gaben 2.1	$D_f = \mathbb{IR} \setminus \{0\}$	1		
2.2	$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \infty$; 0 ist Polstelle ohne Vorzeichenwechsel.			
	$f(x) = \frac{x^3 + 8}{x^2} = x + \frac{8}{x^2}$ ergibt als Asymptote $a(x) = x$.	4		
2.3	$(x_N)^3 + 8 = 0$; $x_N = \sqrt[3]{-8} = -2$	2		
2.4	$f'(x) = 1 - \frac{16}{x^3}, f''(x) = \frac{48}{x^4}$	2		
	$1 - \frac{16}{x_E^3} = 0; x_E = \sqrt[3]{16} \approx 2,52$		2	
	$f''(\sqrt[3]{16}) = \frac{3}{\sqrt[3]{16}} > 0 \; ; \; T(2,52 \mid 3,78)$		2	
	$\frac{48}{x^4} = 0$ hat keine reelle Lösung, also gibt es keinen Wendepunkt.	1		
2.6	$f(-3) \approx -2,111; \ f(7) \approx 7,163$ Das Einzeichnen der Tangente t wird nicht verlangt.		5	
2.7	Ansatz $f'(x_p) = -1$ ergibt $1 - \frac{16}{x_p^3} = -1$ und die Lösung $x_p = 2$.			4
	Gleichung der Tangente durch diesen Punkt $P(2 \mid 4)$: $t(x) = -x + 6$			2
2.8	Ein Rechteck in die Darstellung 2.6 zeichnen		2	
	Zwischensumme (Aufgabe 2)	10	11	6

Teil-	Erwartete Teilleistung	BE	in A	ΑВ
auf- gaben		I	II	Ш
gaben		<u> </u>	<u> </u>	
	Übertrag (Aufgabe 2)	10	11	6
2.9	Formel für Flächeninhalt			
	$A = \left \overline{DA} \right \cdot \left \overline{DC} \right = (x-1) \cdot (f(x) - a(x)) = (x-1) \cdot \frac{8}{x^2} = \frac{8}{x} - \frac{8}{x^2}$		2	
	$A'(x) = \frac{16}{x^3} - \frac{8}{x^2}; \frac{16}{x_E^3} - \frac{8}{x_E^2} = 0; \ x_E = 2$		2	
	$A''(x) = \frac{16}{x^3} - \frac{48}{x^4}$, $A''(2) = -1 < 0$; $A(2) = 2$ ist daher maximaler Flächenin-		2	
	halt.			
	Summe (Aufgabe 2)	10	17	6
	Mögliche BE		33	

Teil-		BI	≣ in <i>i</i>	AB
auf- gaben		I I	II	III
3.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		
3.2	1 g f x x	4		
3.3	Zu zeigen: $G'(x) = g(x)$ $G'(x) = \frac{1}{2}(1 - \cos(2x))$		2	
	Additions theorem $\cos(2x) = \cos^2(x) - \sin^2(x)$ verwenden $G'(x) = \frac{1}{2} \left(1 - \cos^2(x) + \sin^2(x)\right) = \frac{1}{2} \cdot 2\sin^2(x) = \sin^2(x)$			3
3.4	Differenz funktion $h(x) = f(x) - g(x)$ aufstellen; $h(x) = 2 + \cos(x) - \sin^2(x)$ Fläche $A = \int_0^{\pi} h(x) dx = \left[2x + \sin(x) - \frac{1}{2}x + \frac{1}{4}\sin(2x) \right]_0^{\pi} = \frac{3}{2} \frac{\pi}{2}$		5	
3.5	$h(x) = 2 + \cos(x) - \sin^2(x) \text{ und damit}$ $h'(x) = -\sin(x) - 2\sin(x)\cos(x)$ $h'(x) = \sin(x) \cdot [-1 - 2\cos(x)] \text{ ermitteln}$		2	
	$h'(x_E) = 0 0 = \sin(x_E) \cdot [-1 - 2\cos(x_E)]$ $\sin(x_E) = 0 \left -1 - 2\cos(x_E) = 0 \right $ $\underline{x_{E_1} = 0} \underline{x_{E_2} = \pi} \left \underline{x_{E_3} = \frac{2}{3}\pi} \right $		4	
	$h''(x) \text{ ermitteln:} $ $h''(x) = \cos(x) \cdot [-1 - 2\cos(x)] + \sin(x) \cdot 2\sin(x) $ $h''(x) = -\cos(x) - 2\cos^2(x) + 2\sin^2(x) = -\cos(x) - 2\cos(2x) $			3
	Einsetzen: $h''(0) = -3 < 0$; Maximum; $h''(\frac{2}{3}\pi) = 1,5 > 0$; Minimum $h''(\pi) = -1 < 0$; Maximum; für $x_{\min} = \frac{2}{3}\pi$ ist der Abstand minimal.		4	
	Summe (Aufgabe 3)	10	17	6
	Mögliche BE		33	

Teil-	Erwartete Teilleistung	RF	in A	AR.
auf-	Erwartete remeistarig	I	/	()
gaben				
4.1	Nachweis z. B. anhand der Ebene E durch die Punkte A, B und C und der			
	Überprüfung, ob $D \in E$ ist.			
	$E: \vec{x} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -8 \\ 4 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} -4 \\ -2 \\ 6 \end{pmatrix}; r, s \in \mathbb{R};$			
	$ E:\vec{x} = 6 + r \cdot 4 + s \cdot -2 ; r,s \in \mathbb{R}; $			
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix}$	4		
	(9) (5) (-8) (-4)			
	$\begin{vmatrix} 0 \end{vmatrix} = \begin{vmatrix} 6 \end{vmatrix} + r \cdot \begin{vmatrix} 4 \end{vmatrix} + s \cdot \begin{vmatrix} -2 \end{vmatrix}$ führt auf $r = -1$ und $s = 1$.			
	$\begin{bmatrix} 9 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 1 \end{bmatrix} + r \cdot \begin{bmatrix} -8 \\ 4 \\ 4 \end{bmatrix} + s \cdot \begin{bmatrix} -4 \\ -2 \\ 6 \end{bmatrix} $ führt auf $r = -1$ und $s = 1$.			
	(-8) (4)			
	Aus $\overrightarrow{AB} = \begin{vmatrix} 4 \end{vmatrix} = \overrightarrow{DC}$; $\overrightarrow{BC} = \begin{vmatrix} -6 \end{vmatrix} = \overrightarrow{AD}$ und $ \overrightarrow{AB} = \sqrt{96} \neq \overrightarrow{BC} = \sqrt{56}$ folgt			
	Aus $\overrightarrow{AB} = \begin{pmatrix} -8\\4\\4 \end{pmatrix} = \overrightarrow{DC}$; $\overrightarrow{BC} = \begin{pmatrix} 4\\-6\\2 \end{pmatrix} = \overrightarrow{AD}$ und $ \overrightarrow{AB} = \sqrt{96} \neq \overrightarrow{BC} = \sqrt{56}$ folgt		4	
	mit $\overrightarrow{AB} \cdot \overrightarrow{BC} = -32 - 24 + 8 \neq 0$: Die Figur ist ein Parallelogramm, aber weder			
	ein Rechteck noch eine Raute.			
4.2	Durch Einsetzen der Komponenten der Ortsvektoren der Ebene E in die			
	Koordinatengleichung für die Ebene F erhält man mit $s = 10r + \frac{3}{2}$ für die		3	
	(-1) (-3)			
	Schnittgerade $g: \vec{x} = \begin{pmatrix} -1 \\ 3 \\ 10 \end{pmatrix} + r \cdot \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix}; r \in \mathbb{R}.$	0		
	$\begin{pmatrix} 10 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}$	3		
4.3	Mit dem Parameterwert $r = 3$ folgt: $S_{xz}(-10 \mid 0 \mid 22)$.	2		
4.4	(-3)			
	Hilfsebene H mit $H \perp g$ und $O \in H : H : \vec{x} \cdot \begin{pmatrix} -3 \\ -1 \end{pmatrix} = 0$			
	$\left(\begin{array}{c}4\end{array}\right)$			
	$\begin{bmatrix} (-1) & (-3) \end{bmatrix} \begin{pmatrix} -3 \end{pmatrix}$			
	Für den Lotfußpunkt F folgt aus $\begin{vmatrix} 3 \\ +r \end{vmatrix} - 1 \begin{vmatrix} -1 \\ -1 \end{vmatrix} = 0$ mit		4	
	Für den Lotfußpunkt F folgt aus $\begin{bmatrix} -1 \\ 3 \\ 10 \end{bmatrix} + r \cdot \begin{bmatrix} -3 \\ -1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -1 \\ 4 \end{bmatrix} = 0$ mit			
	20 154 5(2(2) 454 2 24)			
	$r = -\frac{20}{13} \approx -1,54$: $F(3,62 \mid 4,54 \mid 3,84)$.			
	(3,62)			
	Abstand von O und $F: d(O; F) = \overrightarrow{OF} \approx 4.54 \approx 6.96$	1		
	Abstand von O und $F: d(O; F) = \left \overrightarrow{OF} \right \approx \begin{pmatrix} 3.62 \\ 4.54 \\ 3.84 \end{pmatrix} \approx 6.96$	•		
	Zwischensumme (Aufgabe 4)	10	11	0
I.	l			ı

Teil-	Erwartete Teilleistung	ВЕ	in /	ΑВ
auf- gaben		I	II	III
	Übertrag (Aufgabe 4)	10	11	0
4.5	Für die Diagonalen gilt $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \begin{pmatrix} -4 \\ -2 \\ 6 \end{pmatrix} \text{ und } \overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \begin{pmatrix} 12 \\ -10 \\ -2 \end{pmatrix}.$ Für den Schnittwinkel γ gilt mit $\cos \gamma = \frac{ \overrightarrow{AC} \cdot \overrightarrow{BD} }{ \overrightarrow{AC} \cdot \overrightarrow{BD} } \approx 0,34 \gamma \approx 70,1^{\circ}.$		2	
4.6	Sei $ \overrightarrow{AB} = \overrightarrow{BC} $, dann ist zu zeigen, dass $\overrightarrow{AC} \cdot \overrightarrow{BD} = 0$ ist. $\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{BC} + \overrightarrow{AB}) \cdot (\overrightarrow{BC} - \overrightarrow{AB}) = \overrightarrow{BC} ^2 - \overrightarrow{AB} ^2 = 0$			6
	Summe (Aufgabe 4)	10	17	6
	Mögliche BE		33	

Teil-	Erwartete Teilleistung	BE	in A	λB
auf-		ı	l II	III
gaben				
5.1	27/30 3/30 26/29 3/20 27/29 2/20 27/29 2/20 27/29 1/28 1/29		5	
	$P(\{1 \text{ im ersten Zug}\}) = \frac{1}{10}, \ P(\{1 \text{ im zweiten Zug}\}) = \frac{3 \cdot 2 + 27 \cdot 3}{30 \cdot 29} = \frac{3 \cdot 29}{30 \cdot 29} = \frac{1}{10}$ $P(\{1 \text{ im dritten Zug}\}) = \frac{3 \cdot 2 \cdot (1 + 27) + 27 \cdot 3 \cdot (2 + 26)}{30 \cdot 29 \cdot 28} = \frac{3 \cdot 29 \cdot 28}{30 \cdot 29 \cdot 28} = \frac{1}{10}$	3		
	$P(\{111\}) = \frac{3}{30} \cdot \frac{2}{29} \cdot \frac{1}{28} = \frac{1}{4060} \approx 0,0002463$	1		
5.2	$P({815}) = \frac{3}{30} \cdot \frac{3}{29} \cdot \frac{3}{28} = \frac{9}{8120} \approx 0,001108$		2	
	$\frac{P(\{815\})}{P(\{111\})} = \frac{9}{2}$	1		
5.3	$P(\{\text{drei verschiedene Ziffern}\}) = 1 \cdot \frac{27}{29} \cdot \frac{24}{28} = \frac{162}{203} \approx 0,7980$		2	
5.4	Sei <i>X</i> die Anzahl der Ziehungen von Glückszahlen mit drei verschiedenen Ziffern. <i>X</i> ist binomialverteilt mit $n = 9$, $p = 0.7980$ und $k = 0,, 9$.		2	
	$P({X = 6}) = {9 \choose 6} \cdot 0,7980^6 \cdot 0,2020^3 \approx 0,1788$	1		
5.5	$P(\{X \ge 1\}) = 1 - P(\{X = 0\}) =$		1	
5.6	$1-0.2020^3 \approx 0.9918$ Gesucht ist das kleinste <i>n</i> , so dass $P(\{X \ge 1\}) = 1 - P(\{X = 0\}) \ge 0.9999$.	1		
5.0	Es folgt $0,0001 \ge \binom{n}{0} \cdot 0,798^0 \cdot 0,202^n$, also $n \ge \frac{\lg 0,0001}{\lg 0,202} \approx 5,8$, also $n = 6$.			4
5.7	$E(X) = 100 \cdot 0,7980 = 79,80$	1		
	$V(X) = 100 \cdot 0,7980 \cdot 0,2020 \approx 16,12$ und daher $\sigma = \sqrt{16,12} \approx 4,015$		2	
	Wegen $E(X) - 2\sigma \approx 71,77$ und $E(X) + 2\sigma \approx 87,83$ erwarten wir mit ca. 95,4 % Wahrscheinlichkeit im kommenden Jahr zwischen 72- und 88-mal eine Glückszahl mit drei verschiedenen Ziffern.		3	
	Zwischensumme (Aufgabe 5)	8	17	4

Teil-	Erwartete Teilleistung	BE	BE in AB	
auf- gaben		I	II	Ш
gaben				
	Übertrag (Aufgabe 5)	8	17	4
5.8	In der Trommel liegen zehn Kugeln mit den Ziffern 0, 1,, 9. Es werden drei Kugeln mit Zurücklegen gezogen. Jede dreistellige Glückszahl wird nun mit der Wahrscheinlichkeit $\tilde{p} = \frac{1}{10^3}$ gezogen.			2
	$P(\{\text{drei gleiche Ziffern}\}) = 10 \cdot \frac{1}{10^3} = 0.01$	1		
	$P(\{\text{drei verschiedene Ziffern}\}) = 1 \cdot \frac{9}{10} \cdot \frac{8}{10} = 0.72$	1		
	Summe (Aufgabe 5)	10	17	6
	Mögliche BE		33	